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Stochastic processes with finite correlation time: Modeling and application to the generalized
Langevin equation
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The kangaroo procesKP) is characterized by various forms of covariance and can serve as a useful model
of random noises. We discuss properties of that process for the exponential, stretched exponential, and alge-
braic (power-law covariances. Then we apply the KP as a model of noise in the generalized Langevin equation
and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of
the fluctuation-dissipation theorem because probability distributions change when the process is inserted into
the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the
KP is especially suitable for physical applications.
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I. INTRODUCTION t
U(t)=m71f R(t—7)F(7)dr, (2

It is frequently assumed that a noise in stochastic equa- 0
tions is not correlated and the underlying stochastic procesgnere the Laplace transform of the resolv&ft) is given
can be regarded as Markovian. This assumption is justifiegy the equation
only if the time scales involved are large compared to the
noise correlation time. On the other hand, the noise itself can R(s)=1/[s+K(s)]. 3)
result from a procedure of fast modes removal. It is well
known [1,2] that in such cases noise Correlations, both inFrom Eq(2), expressions for some average quantities fol-
space and time, must arise. For some stochastic processesw, For the velocity variance, we have
the noise covariance decays fast with time and it can be put
in an exponential formthe colored noisé3]). Frequently 5 AN , , )
even longer tails of the noise covariance are observed. Alge<v“)s(t)=m fo fo R(t—7)R(t—7)C(|7—7'[)drd7’,
braic covariances appear in the fluid dynamids-6] and (4)
linearized hydrodynamickr]; they are responsible for such
phenomena as noise-induced Stark broader{i@h and  where the average)s is taken over an equilibrium ensemble
anomalous nuclear scattering in the framework of the mowith some stationary probability distribution. The FDT en-
lecular dynamicg9]. A direct consequence of the algebraic sures that asymptotically, for large time, the system reaches
form of the velocity autocorrelation function, falling not the equilibrium valugv?)s=T/m (the equipartition energy
faster then 1/ is the infinite value of the diffusion coefficient rule). For the velocity autocorrelation function, in turn, we
[10]. An anomalous diffusion process is frequently observethave simply
in disordered media where a trapping mechanism leads to

algebraic distributions of waiting time. For example, some C,()=(v(0)v(1))s=(T/MR(t). (5)
amorphous insulating materialee.g., AsSe) exhibit a

highly dispersive transient photocurrefit1], just due to The assumption about a form of noise covariance is suf-
charge hopping between spatially disordered sites. ficient to calculate some average quantities. In order to simu-

Stochastic dynamics driven by a noise different from thelate stochastic trajectories from E@), one needs a concrete
white noise obeys the generalized Langevin equat®nE)  physical process that could serve as a model of the noise. For
[12,13: example, for the exponential covariance, it could be the well-

known Ornstein-Uhlenbeck process, which, due to the Doob
¢ theorem[ 18], is very important if amplitude distributions are
—mf K(t—7)v(r)dr+F(t), (1) Gaussian. A broad class of stochastic processes known as
0 “kangaroo processes(KP) [19] is especially interesting.
One can construct the KP for an arbitrary, given form of
whereF(t) is a stochastic force anah denotes the mass of covariance. The KP is particularly well suited for problems
the Brownian particle. Due to the second fluctuation-involving algebraic, scale-invariant dependences. Long tails
dissipation theorentFDT) [14,15], the kernelK(t) can be of constant value of the process in the step-wise structure of
expressed in terms of the noise covariandeg the KP make possible to preserve the memory about this
=(F(0)F(t)): K(t)=Cg/mT, with the temperaturd. The value for a sufficiently long time to produce such slowly
Eqg. (1) can be handled as a usual Volterra equafibél. decaying form of the covariance. Due to that structure,
Assuming the initial conditiom (0)=0, the general solution the KP resembles stochastic, dispersive transport processes
can be expressed in the form of a stochastic intedral in disordered media, e.g., the hopping time distribution

dov(t) B
dt

m
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[20-22. In the framework of random walk processes, a pat- Solution of the Eq(9) allows us, in principle, to generate

tern of long straight-line segments is typical fordyeflights  a stochastic time series of the process with a given, quite

[23-25. arbitrary covariance and with an arbitrary distribution
This paper deals with random noises possessing variouByp(m).

covariances: exponential, stretched exponential and alge-

braic, and expresses them in terms of the KP. The most im-

portant properties of KP are summarized in Sec. Il; we also

derive there formulas referring to those forms of the covari- The KP for the exponential covariance

ance. In Sec. lll, we consider the application of the KP as a

model of random force in the GLE. The most important re- C(t)=vo exp(— wol), (10

sults are summarized and discussed in Sec. IV.

A. Exponential covariance

where vo=const is a reciprocal of the correlation time, is
Il THE KANGAROO PROCESS called the Kubo-Anderson proceg26|. The jumping times
are uniformly distributed in the interval—(e,%) with a
The kangaroo procesdl9] is a stepwise, discontinued mrindependent density,, according to the Poissonian dis-
random function. The value of the procesgt) is deter- tribution. Therefore, the intervals of constamtare distrib-
mined at subsequent random jumping timest,, . ... The  uted exponentially:P(s) = v, exp(—vs). The value of the
jumping frequency(m) depends on the value of the processprocesan(t) may be chosen according to an arbitrary distri-
itself andm remains constant between jumps. We introducepution P, p(m). In that sense, the distributions wfands are
also the interval length as a reciprocal of the frequencyindependent of each other. That property holds only for the
s=1/v. Due to some physical applications, this quantity cankubo-Anderson process; for a general KPands are inter-
also be called “a free path.” The KP is a stationary Markov dependent. The Fokker-Planck equati@h takes a simpler
process and can be defined by the probability demxity,t) form for the Kubo-Anderson process
satisfying the following Fokker-Planck equation

J
Pxp(m —p(m,t)= —p(mt)+P mj m’,t dm’).
2 amit)=p(m)| —p(m, )+ : kp( ), : &tp( )=wo| —p(mM,t)+Pxp(m) | p( )
Jt Jv(m")Pgp(m’)dm (11)
Xf »(m")p(m’ H)dm’ (6) Some forms ofPxp(m) are distinguished. The simplest
' ’ choice isPyp(m)~ 8(m— vg) + (m+ vy) and corresponds

to the dichotomous noisé&he random telegraph process
where Pyp(m) denotes a stationary probability distribution [27]. Due to the central limit theorem, the Gaussian distribu-
of m(t). The interval lengtis is also a stochastic quantity. Its tion of Pyp(m) is of special importance. The Kubo-
probability distributionP(s) is connected wittPxp(m) by  Anderson process with that distribution resembles the
the relation P(s)ds=2Pp(|m|)d|m|. We assume that Ornstein-Uhlenbeck process. However, both processes are
Pkp(m) andv(m) are even functions ah. This assumption not identical [28]; the Fokker-Planck equation for the
allows us to get a simple expression for the covariance of K®rnstein-Uhlenbeck  process, d)((dt)p(m,t)=vo(d)/

C(t)=(m(t)m(0))s where the average is taken over the sta-(9m)(m+ D v,(3)/(dm))p(m,t), differs from the Eq(11).
tionary probability distributiorPp(m):

+o B. Stretched exponential covariance
C(t):f m?Pyp(m)exd — »(m)|t|Jdm. (7)

The exponential distribution of interval lengthys), a
distinctive feature of the Kubo-Anderson process, can also
We want to derive an expression fa(m) for a given cova- characterize stochastic processes with the covariance form
riance C(t) and an amplitude distributioRxp(m). Let us  other than exponential. Let us consider the covariance pos-
assume that(m) is a monotonic increasing function | sessing the shape known as the “stretched exponential.” This
and v(«)=0o0. Then we can change the integration variablefunction is the following:
in Eq. (7) and obtain the Laplace integral

C(t)=exp — at?), (12
e dm d
C(t)—ZL(O)m Pre(M) g, & v[t)dv. ®  Wwherea=const and & y<1. In the present study, we as-
sume y=1/2. The stretched exponential function describes
Therefore,»(m) is a solution of the following differential relaxation phenomena in random systd28,30 and can be

equation attributed to a dispersive transport of mobile defects in the
q glass[31]. The dispersive transport is characterized by the
L2 = infinite average time between subsequent hops. Moreover,
dm 2mPyp(M)/C(v), © the velocity autocorrelation function of a particle inside the

5 Sinai billiard with the finite horizon is also given by the Eq.
whereC(v) denotes the inverted Laplace transfornGit). (12) [32].
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We want to find expressions, useful in practical applica- In the first case, we cut off the large values| of
tions, allowing us to generate time series possessing the re-
quired covariance. The inverted Laplace transform of Eq.

11—«
i —a <
(12) reads P o(m)—| 2a (Im|/a) Im[<a

(20)
0 |m|>a,

= ol 2
Clv)= 2 \/;V exiL — a/(4v)]. (13 wherea=const is an additional parameter. Due to the con-
dition v(°)=, a must be a large number; finiteness af
In order to simplify the differential equatiof®), we take the results in a deviation of the covariance from the assumed
amplitude distribution in the form form (18) neart=0 and in removal of the singularity. More-
over, the normalization condition implies<<1. Inserting

2 Pxp(m) into the Eq.(19) gi th ion for th
_f -5 1.-a Kp g. gives us the expression for the
Pre(M) W|m| exp(— m ), (14 elation betweem and s,
whereme (—o0,%). The distribution possesses maxima at 1

_ = Uya(l—a)ly —(8—a)ly _
M= Ma,= £[4/(57)]%* and it is very small neam=0. s=5=(ya’) 72 |m O(s—e€), (21)

Inserting Egs(13) and (14) into Eq. (9), we get the differ-

ential equation forr(m) in the form where we have introduced a constarit=(1—«a)/(3— a).

Finiteness of the parameterimposes a restriction on the

lower bound of the interval lengtet se (e,). The smallest

interval length € is related to that parameter bye
(155 =(a'y)""a~?". The probability distribution of interval

lengths takes the algebraic form
One can easily check that E@.5) is satisfied by the function

av _ 8/(\Jra)m31¥2exp — a—z{v_1—4/(a27rm4)}
dm 4 ’

S P(s)=(ya' )t ¥a 2's v’ "L, (22)
v(m)=1/s=(ma/4)m (16)
From Eq.(22), some restrictions on possible asymptotic be-

and the interval lengths distribution is indeed exponential: havior of P(s) follow. The slowest decay rate for large

o? o? occurs fora close to 1:P(s)~s~ 1. On the other hand, the
P(s)=Zex;<—Is). a7 distribution P(s) falls the most rapidly, as~s™?"%, for
a— — 0,
The direct relation betwees and m follows from the Eq. ne;\rrhrﬁ—oz)her possibility is to cut off the distributidPp(m)

(16). From that equation, we conclude tha& (0,0) and
long intervals correspond to the valuesrofclose to zero;
such events are extremely rare. Technically, a time series

m(t) can be constructed by sampling subsequent intesvals

from the distributionP(s). Then corresponding process val- Pkp(m)=
ues are evaluated by means of ELp), taking into account,

in addition, that both signs ah are equally probable.

0 Im|<a

a—1 ja)-« |m=a (23

wherea>1. One can show that the minimal interval length
C. Algebraic covariance is finite (nonzerg if a>3. The interval lengths distribution

) . can be obtained similarly as for the ca®). The result is
Let us now consider the KP possessing the power-lavgnghﬂy more complicated:
covariance that we express in the following form:
3—a —2/(3—a)
l*asfy_i_ a37a

P(s s v L

)= Wa—1)°

= -y
Ct)=T(yt (y>0). (19 (24)
The jumping frequency(m) one can derive from Eq9),

L . Asymptotically, the distribution approachss? !, indepen-
similarly as for the stretched exponential case ymp y PP P

dently of a.
1/y

[m|
v(m)= ZYJO m’2Pgp(m’)dm’| . (19 lIl. APPLICATION TO THE GLE

We will now consider Eq(1) for which the random force
We assume the amplitude distribution in the algebraic formF(t) is modeled by means of a concrete stochastic process,
Pkp(m)~m~¢ (a=const), modified in order to satisfy the possessing a given covariance, and simulate stochastic tra-
normalization condition 25Pxp(m)dm=1. Generally, two jectories of the Brownian particle by means of a Monte Carlo
different forms ofPxp(m) are possible. method. Therefore, two equations are to be solved simulta-
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neously: the original GLE and the second one, describing asimulation results may be important. In particular, one can
adjoined process, in the form of some KP. Accordingly, inexpect a violation of the FDT that manifests itself in an im-
the following, we assumé& (t)=m(t). A similar approach proper asymptotic behavior of the velocity variance
used to be applief33,34 to deal with stochastic equations (v?(t))s. Determining of that quantity can indicate whether
driven by the colored noise; the adjoined process constitutethe expected equilibrium state is reached and the equiparti-
in that case the Ornstein-Uhlenbeck process. Independenttion energy rule holds.

of those methods, which model the noise as a stochastic, The Brownian particle velocity is to be determined from
random process, one can introduce some deterministic syfhe stochastic integr&R) in which stepwise, constant values
tem possessing a required autocorrelation function. Thef F(t), F, follow from the length of subsequent time inter-
value of the noise at a given time is then determined by theals sy :

evolution of dynamical equations of motion. In this way,

Shimizu [35] solved both ordinary Langevin equation and n ty t

GLE, representing the noise by a chaotic map. Similarly, thev(t):m_l[ > ka R(t—7)d7+ Fn+1j R(t—7)dr
Sinai billiard has been used to model a noise with long-time K=t k-t tn
covariance in the Langevin equatif®6]. Certainly, the first (25)

two moments do not determine the noise uniquely and th@vheretk—tk_fsk andt,=0. Sampling of intervals, con-

O o o ol ol addlon Seeumplns, £5PSinues 2 ong s he e reached (st andS
y P Y P =t, wheren is an arbitrary integer. The interval length dis-

cesses. The form of the noise must be decided according ?r]ibution P(s) is a natural quantity of interest. The last

physical requirements of a concrete application. Neverthe;Ll interval corresponds to?he tirmB{éSS] It is cléar that the

less, some important quantities, like the autocorrelation func-. ~ . . P . L L

tion of the Brownian particle velocit(s), apparently depend dlstr|put|9n (_)f Iepgths of that mtervgl, th_e effe_ctlve inter-

only on the noise covariance. vgl d|str|but|.on P(ls,t), cannot be identical withP(s); a N
However, for some stochastic processes description giimple cpn3|derat|o.n reveals, e.g., the enhanceq_probabl!ny

those quantities provided by the equations collected in th&f choosing longer intervals. Generally, that modified distri-

Introduction does not agree with the simulation results. Solvbution can depend oh One can express it in terms of the

ing the GLE to obtain the Brownian particle velocity requires cumulative distribution functiod(s,t) [37]:

the value of the nois€&(t), determined by the adjoined pro-

cess, at a given time. It has been demonstrated rec&y B(s,t)= i(l)(s t) (26)

that this requirement modifies probability distributions—the ' as e

adjoined process looks differently when inserted into the

equation. Consequences of that change for the Monte Carl@here

Jt S(x)des P(&)dé¢ for Oss<t

t—s t—x

O(st)= . . (27)
ftS(x)dxf P(§)d§+f P(&)d¢é for s>t.
0 t—x t

The form of auxiliary functionS(x) follows from the nor-  simple but nontrivial example. It involves also the Poisso-
malization condition nian distribution of jumping times.

t o0 0
fo S(X)dXJt,XP(f)ngrﬁ P(§)dé=1. (28 A. Stretched exponential noise covariance

We assume the noise covariance in the following form:
For the Kubo-Anderson process, the modification of the

interval distributionP(s), exponential in that case, is of mi-
nor importance becaus®p(F) is independent oP(s) and
the interval lengths do not influence process values. Conse-
guently, results of the simulations agree with general predic-
tions implied by the FDT. Other forms of noise covarianceEquations(2) and(25) express the solution of GLE in terms
require taking into account the modified distributiBis,t).  Of the resolvenR(t). The Laplace transform of that function
The case of stretched exponential covariance provides B(s), is given by Eq.(3) and the kernel has the form

Ce(t)=2mT/ a? exp — a\t). (29)
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5 (1 ma o ventR(t) we need to evaluate the inverse Laplace transform
K(s)= = S 2505 exp(a’/(4s))| 1-erf 2551 from R(s): R(t)=(1/27i)[TIZ""R(z)€?’dz The integrand

possesses two conjugate simple poles and a cut along the
negative real axis. Evaluation of the contour integral pro-
where erf§) denotes the error function. To obtain the resol-duces the following result:

R(D = e~ (c,sinbts b) 4 jw x2 exf x2— a?t/(4x?)]dx 31
=e ?(cysin c,cosbt) —— :
! 2 JarJo [{2x2+ a?(4x?)}exp(x?) — 2\/mx3 erfi(x) ]2+ 4 X8
|
the imaginary error function erfixj=—i erf (ix) can eas- independent. Therefore, asymptotically the process becomes
ily be calculated by the following expansion: stationary. NeverthelessP(s,t) possesses a mean value
" _— twice that forP(s) [39] and simulation results must reflect
erﬁ(x)zi > e that. Indeed, the velocity variance obtained from the Eq.
\/; qi=on!'(2n+1)° (25), shown in Fig. 3, stabilizes at a lower value then that

predicted by the equipartition energy rul@/(m). It is so
The constanta andb denote the real and imaginary parts of because long intervals correspond to small values of the
the pole ofﬁ(z), respectively:zo=—a—|bli; they have to noise amplitude, according to the E46). For short times,
be evaluated numericalle, and c, can be found by the in turn, the result of the simulation agrees with the general
standard residues analysis. Fee=1 the constants are the prediction(4), also shown in Fig. 3, because then the branch
following: a=0.207 094, b=0.440963, c;=—0.127752, s>t dominates the distributio(82) and the dependence on
and c,=0.593952. Figure 1 presents the functiB(t) for is weak.
a=1 anda=2. It is possible to construct some KP that does not change
We wish to perform the Monte Carlo simulation using thewhen inserted into the GLE and that produces the equilib-
noise defined by the proce&B4). According to Eq(17), the  rium state in agreement with the FDT. For that purpose we
interval distribution is exponential:P(s)=p8 exp(~fs),  single out some subset of kangaroo processassaicted
where B= /4. We expect that taking into account of the Kp (RKP), defined in the following way. We choose subse-
modified form of the distribution may be important for the guent intervals, in the stepwise evolution of KP, according
simulation results because ands are connected. That dis- (4 the distributionP(s), and assume thatorresponds to the
trlbufuon can eaglly be found in this case. From &), we 4 interval, i.e.,S,=s;+S,+---+5,<t and S,;,>t.
obtainS(x) = B; finally we get Let S;=S,,,—t>0. We call some KP “restricted” ifS;
2 _ e =<d for a givend; n is an arbitrary integern e (0,%). The
A exp(—fs) for 0=s=t (32 probability distribution of the last interval lengths we denote
B(1+pt)exp(—pBs) for s>t. by P*(s.t: ; * e toop) — F
y P*(s,t;d). Obviously,P*(s,t;0)=P(s,t). On the other
hand, in the limitd—0 the last interval lengths obey the

P(s,t)=

The function(32) is presented in Fig. 2. The distribution is
discontinued. It depends dnbut this dependence dwindles
exponentially with time; the left-hand branch<tt) is time

1.0
—a=1
0.6} h=>
= o3| |
S |
0.0f \/
8
—04, 5 10 15 20 25 S

t FIG. 2. The time evolution of the effective interval distribution

FIG. 1. The resolvenR(t) (31) for the stretched exponential ﬁ’(s,t) (32) corresponding to the exponential form of the original
shape of noise covariance as a function of time. distribution P(s) with 8=1.
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FIG. 4. The time evolution of the effective interval distribution

FIG. 3. The velocity variance obtained from the Monte Carlo
simulation of GLE solutiong25) for stretched exponential form of (s, t) (38) corresponding to the original distributidd(s) in the

noise covariance. The noise has been modeled by the®li line) form (35) with y=1. The minimal interval lengtle=0.01.

and the RKP withd=0.01, using theorentB3) (dashed ling 1000
trajectories have been calculated for either case. The variance cgkef, [40] for y=3/2 and in Refs[37,41] for y=1. Now we

;:_lialte?hgor:rtiig'(ﬂa;;ilio a;;rgséﬁgteg?;rtr?ét;ieltemperature want to calculate the modified distributitf-?(s,t). First, we

’ P ’ P ' have to solve Eq(28), which assumes the form of Abel’s
original, time-independent distributio(s) but only for integral equation
s=<t because longer intervals are excluded by construction. ¢
Therefore, the distributioP(s) can be recovered at large f S(X)(t—x)~ Rdx+1t""B=¢"75, (36)
times if those intervals are negligible. We get then the fol- 0
lowing theorem: If the probability that intervals in a se- ]
quences, are larger thar asymptotically vanishes, then The solution reads
lim lim P*(s,t;d)=P(s). (33) ()= e §

(12— yI3)I'(y/I3)

t—o d—0

BIosx). (3D)

For the distribution(32), the required probability vanishes After evaluation of integrals, we obtain from Eq&6) and
with time and the theorem can be applied. In practice it ca : e ety -
be done easily by choosing some smalind sampling in- r{27) the expression for the required distribution:
tervals from the distributio®(s), in the same way as before, B(s.t)
as long as the timeis reached. Then all sequences of inter-" ™

vals for whichS,>d are rejected. Figure 3 presents the result g 31
of such calculations fod=0.01. At short times, the velocity F(1=73)T(773) [t~ (t—s)"?] for e<s<t
variance differs substantially from the other results shownin  — Y 2 Y "
the figure because the bransht is then essential, but as- t N Y|l vs1 for s>t
ymptotically it approaches the valdém, in accordance with T'(1—y/3)'(yI3) 3 '
the equipartition energy rule. (39)

B. Algebraic noise covariance The distributionP(s,t) for y=1 is presented in Fig. 4. The

Finally, we consider a power-law form of the covariance picture is markedly different from that obtained for the ex-
ponential caséFig. 2); the right branch, corresponding to the

intervalss>t, does not vanish with time but gets larger when

The KP we apply to model the noise is defined by E); C(_)mp_aring to the left br_anch. The entire distribution sr_lifts

we implement the simplest cage=0. Then the amplitut,je with time tpvyargi; large intervals because the average inter-

distribution is a constantexcept very larggF|): Pyp(F) val length is infinite. . . .

= \Jy€7I3/2 wheree is the smallest interval length. The in- _ 1herefore, the effective distributioR(s,t) differs sub-
stantially from theP(s), and the stochastic process generated

Cr()~t"7 (0<y<3). (34)

terval distribution follows from Eq(22): ) , ! )
by it must possess different properties. First, let us recalcu-
Y a1 late the covariance that, in general, can depend on an initial
P(s)=3€™s " b(s—e). (39 timety: E(t,tg)=(F(to)F(to+1))s, where the process(t)
is to be determined by the simulation. Technically, that

The resolvenR(t) for the noise with covariancg4) can  means that for a givety, one produces a sequence of inter-
be evaluated by means of similar methods as for thevals to reach the timg,+t. Then one evaluates correspond-
stretched exponential covariance. Results can be found iimg values of the proceds(t) using Eq.(21). Then the pro-
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cess is governed by the distributiét(s,t). The expression IV. SUMMARY AND DISCUSSION

for the covariance follows from the E(): The kangaroo processes represent a broad class of random

functions characterized by various forms of the covariance.
Therefore, they provide an opportunity to model physical

C(t,tg)= fws*M exp(—t/s)P(s,ty)ds. (39)

e stochastic processes possessing an arbitrary covariance and,
in addition, a quite general amplitude distribution. The KP is
Evaluation of the integral gives the following result: stepwise~the value of the process changes according to some
jumping frequency that, in turn, depends on that value. Some
3. -13 physical phenomena exhibit a similar, stepwise behavior and
C(t,tg)= L4 [tg’3t‘7;(y,t/e) the KP is a natural process to model them. An important
F(1—yB)T(¥/3) quantity is the distribution of intervals of constant process
—té’z’ Y6 (=1= 12 ey —t/2t ) valueP(s), uniquely connected to the amplitude distribution.
In this paper, we have discussed two forms of that distribu-
XT(1+ yIB)W 6172y t/tg) ], (40 tion: the exponential and the algebraic ones. We have dem-

onstrated how one can generate algebraically correlated pro-

— . . cesses using the KP with some algebrd§s). The
where y(a,x) denotes the incomplete gamma function and ! ) . .
exponential form, in turn, is suitable to represent both expo-

Wap(x) stands for the Whittaker functioft2]. Certainly, nential and stretched exponential correlations

the above result is different from our starting covariance The GLE has been solved using KP as a. model of the
(34); the most striking feature of the functidl(t,to) is the  nppjse. The problem has been considered as a juxtaposition of
dependence oty that does not diminish with The variance  two random processes: of velocity of the Brownian particle,
of the processg?(ty), can be found by inserting=0 into  described by the GLE, and of the adjoined KP. In the frame-
the Eq.(40). Let us consider two examples. The casel  work of that approach, the forde(t) in the stochastic inte-
has been discussed in REB7]; the final expression for the gral (2) is determined by looking for a value of the KP,

variance is the following: independentlyevolved, at a given time. Such procedure
changes probability distributions of the KP and Monte Carlo
e 18 simulated solutions of the GLE are not in agreement with

[31n3/2+ 7/3/6+In(ty/€) ]ty 23 results predicted by general analysis, founded on the FDT.
Results obtained from effective probability distributions,

(to>€). (41)  among which the interval distributioR(s,t) is the most im-
portant, does not correspond to the equilibrium state consis-

especially important. They have been extensively studied ifiélated processes, even nonstationarity effects emerge. Are

connection with the Brownian motion in a viscous fluid those results involving effective distributions a necessary

[43,4-6,40. In this case, the variance of the process readsconsequence of modeling of the noise by means of adjoined
random process in the form of KP? If the stochastic force we
want to insert into the stochastic integfd) represents some

] (42) independent physical process, the modified probability distri-
bution (26) has to be taken into account. In such cases, we
must expect an apparent violation of the FDT, despite proper

Therefore, in contrast to the original varianpealculated definition of the kernel. Reversely, any information about

with the distributionP(s)] o?=y e 7, the effective vari- properties of the noise, extracted from GLE solutions, al-

ancea? is time dependent and tends to zero. That behavior i¥/2YS refers to the effective appearance of that process in the

a direct consequence of nonstationarity, i.e., of the time deGLO' the other hand. f there i ibility of
pendence of the distributioR(s,t). The decline ofa?(t,) fl the OTher hand, 1o SOME cases, fere IS a Possibiy o

means that the effective temperature of the system drops gonstructing the model in such a way as to avoid any modi-
P y PS fration of the distributions and to preserve consistency with

zero when we insert the process into the stochastic integr%e FDT. For that purpose, one can use some specific version

(25 as a model of the noise. Consequently, the Browniarbf the ordinary KP—the RKP. The idea is very simple: if

B e e Ame. i, some iteval n th stepie evoluon of the KP ends ex.
AR . “actly at a point corresponding to the required time, nothin
sion, as it has been demonstrated in R&7] for y=1. y b P g q g

The RKP can be constructed also for algebraic correlahas to be modified. We can imagine the KP as a “clock” with

. . a variable frequency given by the distributi®{s). In that
tions. However, the theoren83) cannot be applied because picture, the application of the RKP witi=0 means a syn-

of the strong time dependence of the distributit(s,t). The  chronization of that clock in respect to the physical time in
probability that the interval length is larger thémoes not  the GLE. An important limitation of the synchronization pro-
decline with time: P(s>t,t)=[{P(s,t)ds=3/[yI'(1  cedure consists in the fact that interval lengths of the RKP
—yI3)I"(y/3)]=const. are always finite, not longer than tinieand P(s) usually

o) = 3T

R 2
2 __2\1/3 -1/2 —3/2
tg)=(5 —t +1t
o(tg)=(5) (775 0 0
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possesses infinite tails. If, however, those tails decline suffinegligible for long times; the distribution itself remains time
ciently fast, intervals longer thembecome negligible. It has dependent. For that reason, the RKP that consist in a cutoff
been demonstrated that the exponential interval distributionf long intervals cannot work as a model of algebraic cova-
possesses this property and a Monte Carlo algorithm utilizriances. In the other words, due to divergence of moments of

ing the RKP can easily be constructed—simulation resultg, 4 yistributionsP(s) and P(s.t). the branch correspond-
indeed correspond to the equilibrium state predicted by the P (1), P

FDT. The KP in this form is especially suitable for physical ?ng to_the_ Intervals=t is m_portant for larget and the syn
I : : chronization cannot be achieved.

applications. We note, however, that the RKP with 0 is The necessity of taking into account the modified form of

not completely independent of the GLE: the synchronization y g

introduces a coupling. The case of stretched exponential ¢ értc()a t;ag I%d';tgsﬁgggs és S:ttic:ssgme?ht: gr]girgr_ELt;Jr: ree\;in
variance is only the simplest nontrivial example of applica- Y 9 ' €9, y 9

tion of KP with the Poissonian interval lengths distribution. equation, if the_ randc_)m force is modeled by the adjoined .KP'
. o . Monte Carlo simulations can be useful for some generaliza-
A straightforward generalization, allowing for the other

power-law dependencas(s), produces KP's with covari- tions of the diffusion equation, in particular for the Burgers

. : equation[44]. Nonlinear equations, possessing a broad spec-
an((:;as given b¥ the B(?[stsr:altfunct|on§(r]|4f). fth . trum of applications in the fluid dynamics, are characterized
Ne cannot expect that every shape ol the covarnanc y long-range noise correlations both in space and time

function may be modeled by some sufficiently steep form o ; .
P(s) and, therefore, the RKP is always a proper tool. Pro-[45’1]' Also, noise can possibly be modeled by the KP.

cesses possessing covariances with long tails are character-
ized by long intervalglong free paths Indeed, in Sec. II, we
have indicated a strong limitation of admissible shapes of
P(s). The algebraic tails oP(s) are essential and very long
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